Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants.
نویسندگان
چکیده
Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of microseconds, respectively, are responsible for initial light-induced fluorescence quenching via singlet-triplet annihilation. In addition, at times ranging from milliseconds to seconds, a slow decay of the light-induced fluorescence quenching can be observed, indicating the presence of additional quenchers generated by the laser. The generation of the quenchers is found to be sensitive to the presence of oxygen. It is proposed that long-lived fluorescence quenchers can be generated from Chl triplets that are not transferred to Car molecules. The quenchers could be Chl cations or other radicals that are produced directly from Chl triplets or via Chl triplet-sensitized singlet oxygen. Decay of the quenchers takes place on a millisecond to second time scale. The decay is slowed by a few orders of magnitude at 77 K indicating that structural changes or migration-limited processes are involved in the recovery. Fluorescence quenching is not observed for trimers, which is explained by a reduction of the quenching domain size compared to that of aggregates. This type of fluorescence quenching can operate under very high light intensities when Chl triplets start to accumulate in the light-harvesting antenna.
منابع مشابه
Evidence for two spectroscopically different dimers of light-harvesting complex I from green plants.
A preparation consisting of isolated dimeric peripheral antenna complexes from green plant photosystem I (light-harvesting complex I or LHCI) has been characterized by means of (polarized) steady-state absorption and fluorescence spectroscopy at low temperatures. We show that this preparation can be described reasonably well by a mixture of two types of dimers. In the first dimer about 10% of a...
متن کاملMolecular adaptation of photoprotection: triplet states in light-harvesting proteins.
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective f...
متن کاملThe influence of aggregation on triplet formation in light-harvesting chlorophyll a/b pigment-protein complex II of green plants.
The influence of aggregation on triplet formation in the light-harvesting pigment-protein complex of photosystem II of green plants (LHCII) has been studied with time-resolved laser flash photolysis. The aggregation state of LHCII has been varied by changing the detergent concentration. The triplet yield increases upon disaggregation and follows the same dependence on the detergent concentratio...
متن کاملElectron-Phonon Coupling and Vibronic Fine Structure of Light-Harvesting Complex II of Green Plants: Temperature Dependent Absorption and High-Resolution Fluorescence Spectroscopy
Polarized, site-selected fluorescence was measured for light-harvesting complex II (LHCII), the major Chl a/b/xanthophyll binding light-harvesting complex of green plants. Upon selective excitation in the range of 679-682 nm at 4 K, separate zero-phonon lines and phonon wings could be observed, as well as sharp lines in the vibronic region of the emission: vibronic zero-phonon lines. The maximu...
متن کاملMapping Parallel Pathways of Energy Flow in LHCII with Broadband 2D Electronic Spectroscopy
Two-dimensional femtosecond broadband electronic spectroscopy was used to simultaneously probe parallel pathways of energy transfer in the major light harvesting complex of Photosystem II from plants. Sub-100 femtosecond relaxation between delocalized excitonic states on highly coupled clusters of chlorophylls and several hundred femtosecond to picosecond components of relaxation between cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 39 34 شماره
صفحات -
تاریخ انتشار 2000